

Abstract — In this paper, an implementation of a Resource

Directory, a directory storing descriptions of resources

available in an Internet of Things system, based on a native

XML database is described. Its performance is compared

with performance of a Resource Directory with the same

functionality, but implemented using a relational, SQL

database. The evaluation results show hat the XML based

Resource Directory provides more flexible management of

the resources and shorter lookup execution time, while SQL

based Resource Directory provides shorter response times.

Key words — Native XML databases, relational databases,

IoT, Future Internet, Resources.

I. INTRODUCTION

HE technological progress is all about the low cost

microprocessors and embedded devices that enables

the new ways of communication, making the concept of

large set of devices connected to Internet feasible. This

concept is going to change the perspective of future

application in respect to large number of information

available from tiny low powered devices. In general, all of

these scenarios are possible due the communication

between the machines (M2M), actuators, sensors, and

many other "things". The concept is globally gathered

under the one name - Internet of Things (IoT).

In order to impose the new addressing schemes, many of

the existing standards are replaced with the light-weight

versions. Therefore, evaluation of databases, transport

protocols, and message formats are required to leverage

the better solution for different IoT scenarios. In this paper

is considered M2M resources storing. Next chapters will

show the existing relational database resource storing

implementation and comparing to the native Extensible

Markup Language (XML) database storing. At the end of

the paper are presented comparing results and conclusion

about flexibility and performances of the relational and

XML based resource storing.

This paper describes work undertaken in the context of the

SmartSantander project. The research leading to these results has received

funding from the European Community's Seventh Framework Programme

under grant agreement n° ICT-2009-257992.

Stevan.J, Ericsson Serbia, University of Novi Sad, (e mail:

stevan.jokic@ericsson.com).

Srđan. K.. Ericsson Serbia, University of Belgrade, e-mail:

srdjan.krco@ericsson.com

Jelena V., Ericsson Serbia, e-mail: jelena.vuckovic@ericsson.com

Nenad G., Ericsson Serbia, University of Belgrade, e-mail:

nenad.gligoric@ericsson.com

Drajić D., Ericsson Serbia, e-mail: dejan.drajic @ericsson.com

II. RESOURCE DIRECTORY

Resource Directory (RD) is originally designed and

implemented during SENSEI project [1]. The main

objectives of the SENSEI project were integration of the

Physical with the Digital World of the Network of the

Future.

All entities in such an integrated system were

considered as resources. Resource Descriptions are

introduced in the SENSEI project as human/machine

understandable representation of the Resources and are

formatted following an agreed XML schema. Each

Resource Description is represented as an XML structure

that contains a set of tags describing the Resource, as well

as the URL where the so called Resource Endpoint (REP)

- access point to the Resource is located. A REP provides

the Resource Access Interface (RAI) for accessing the

Resource. Following XML is a resource description for a

gas sensor on deployed on a bus in Pančevo as a part of the

ekoBus system [ref].

<Resource-Description>
<Resource-ID>

urn:sensei:ericsson.com:EnvironmentalSensors:bu
sgps:358278006369805

</Resource-ID>
<Name>Bus Location Sensor</Name>
<Tag>Bus</Tag>
<Tag>GPS</Tag>
<Tag>Sensor</Tag>
<Tag>Tracker</Tag>
<Tag>Pančevo</Tag>
<Tag>24</Tag>
<Tag>358278006369805</Tag>
<RAI-Description>

<Description>GET returns sensor values
(RDF)</Description>
<REP-Locator>

http://www.ekobus.rs/rephandler/gps/35827
8006369805

</REP-Locator>
</RAI-Description>

</Resource-Description>

Evaluation of an XML Database Based

Resource Directory Performance

Stevan Jokić, Srdjan Krčo, Jelena Vučković, Nenad Gligorić, Dejan Drajić

T

Fig. 1. RD in SENSEI architecture

RD contains resource descriptions of all available

resources. Management of descriptions stored in a RD is

possible via a set of RD’s interfaces which provide

Resource Create Read Update Delete (CRUD) as well as

Resource querying and subscribing capabilities.

The role of the RD is to make the glue between

Resources which advertise the operations they offer as

Resource Descriptions and potential clients that look for

particular functionalities. Its place in the overall SENSEI

system is presented in Fig. 1.

The main components comprising an RD are the

following:

• Resource Publication Interface (RPI) - responsible for

publication of available resources and their descriptions.

• Resource Lookup Interface (RLI) - based on the

received search parameters identifies suitable resources in

the Resource Database. Subscribing interface is

implemented as part of the RLI interface.

• Resource database - stores descriptions of all

resources.

The RD functionality was implemented in JAVA

programming language in combination with a MySQL

database for persistent storage of data. Interaction with the

resources and the users was based on the RESTlet

framework [3]. The Restlet approach utilizes the basic

HTTP methods (POST, GET, PUT and DELETE) to build

CRUD (Create, Read, Update and Delete) applications.

All requests to RD and RD responses are XML formatted

messages.

Evaluation of the main technical features of the SENSEI

architecture was performed in the ecoBus system [4]. The

ecoBus system utilizes public transportation vehicles to

carry a set of sensors across the city of Belgrade to observe

a number of environmental parameters as well as events

and activities in the physical world. Resources in this

system are: GPS, environmental sensors on buses, bus

lines, line path and estimated bus arrival time service. All

resources are stored in RD using appropriate resource

descriptions. Clint access to the system is enabled by web

and android application which uses RD’s RLI interface to
find appropriate resources, and their REP for data and

measurements accessing.

III. RD ROLE IN THE SMART SANTANDER PROJECT

Smart Santander project proposes a unique in the world

city-scale experimental research facility platform in

support of typical applications and services for a smart city

 [5]. Management of a highly versatile set of

SmartSantander resources is entrusted to the RD. The RD

also provides notification managements for resource

subscribers. The subscribers are platform end users, as

well as other SmartSantander components. Many of the

resources in SmartSantander could not be described well

using the SENSEI resource description schema. Wrapping

SmartSantander resources to the SENSEI defined schema

for resource descriptions results in complicated Tag

elements. The following XML code is a part of the

resource description of the Wisebed CTI-Testbed:

<Tag>node_name #
urn:wisebed:ctitestbed:0x1bee</Tag>
<Tag>factory_class #
de.uniluebeck.itm.tr.runtime.wsnapp.WSNDeviceAp
pFactory</Tag>
<Tag>node_type # telosb</Tag>
<Tag>node_port # XBPTDXR1</Tag>

From this example it’s noticeable that the “key-value”
data are stored in the text content of the Tag element,

separated by hash symbol and hence cannot be used

without prior processing. Resource wrapping degrades

presentation of XML data which is one of the key XML

advantages. Further to that, some parts of the wrapped

resource descriptions must use the CDATA XML’s
sections in order to retrieve XML validity [6]. Resource

wrapping also degrades RD’s Tag querying capabilities,

which is used for resource lookup as well as for resource

subscription.

RD’s subscribing capabilities are used extensively in the

SmartSantandar project. This procedure involves

describing resources using wrapped tags and submitting

them to the RD’s subscribing interface. The subscribers

receive notifications from the RD about the changes

regarding the subscribed set of resources. These

notifications also contain wrapped resource descriptions.

This requires implementation of the custom, hybrid XML

and text parsers on the subscribers’ side thus adding

complexity.

To address the issues above and simplify the problem of

storing versatile XML files, we implemented a version of

RD using a native XML database (SEDNA [ref]) as

permanent storage.

They use different data types, and XML’s ability to
change structure in the middle of a document does not

mesh with a relational database’s rigid table structures.
XML generating, in dependency to the data modeling

complexity could retrieve data from many tables. Also,

when an XML document is stored in a relational table,

information can be lost, such as element ordering and the

distinction between attributes and elements.

IV. SEDNA XML RD IMPLEMENTATION

Sedna is an open-source native XML database system

being developed by the MODIS team at the Institute for

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

MySQL SEDNA MySQL SEDNA MySQL SEDNA

1000 100.000 1.000.000

Resource description number

[m
s
]

5 users

10 users

20 users

100 users

Fig. 2. Response time comparing for various number of simultaneous requests and 1000, 100.000, 1.000.000

resource descriptions in the RD respectively

System Programming of the Russian Academy of Sciences

 [7]. Sedna is developed from scratch in C/C++ and

Scheme, also implements W3C XQuery language and its

data model exploiting techniques developed specially for

this language. XQuery is a query and functional

programming language that is designed to query

collections of XML data [8].

The Sedna based RD is implemented in Java

programming language as a web application. RESTLET

libraries [10] are used for the REST web services

implementation. Connection to the Sedna database is

maintained using Sedna Java driver API library. Data are

separated to the appropriate database collections.

Collections can be considered as tables in the relational

database terms. The collections stores and manages XML

files. The resource descriptions are stored in the collection

named “rdcoll”. Subscriptions are stored in the

“subscriptions” collection, resource matching the

subscriptions in the “matched” collection and notifications

for subscribers are stored in the “notifications” collection.

The XQuery is used in the querying procedure. This

enables more powerful lookup capabilities compared to the

tag based lookup used in the original RD implementation.

The old tag based lookup capability is kept as well as it’s
extended to support XQuery client lookups as well as

mixing the tag and XQuery lookups.

Resource publishing, reading, updating, deleting is

performed using Sedna Java driver API applied to the

appropriate collection in database. In the Sedna based RD

implementation resource descriptions are addressed using

provided Resource-ID element. If the Resource-ID is

omitted during publishing procedure, a Sedna generated

ID is added to the resource description. A resource reading

from the native XML database does not require XML

serialization from several tables, because RD’s database
already has appropriate formatted resource description. All

this simplifies resource managing procedures because

there is no need to manage several tables during resource

description storing, reading, updating, deleting. Access to

resources is provided through the appropriate URL in the

following format RD_URL/rd/{Resource-ID}.

The subscription interface is separated from the RLI. A

subscriber can use both XQuery as well as tag based

queries. The original subscription capability is extended to

enable subscribers to read notifications using the HTTP’s

GET method. This approach is useful in the situations

when subscribers couldn’t provide inbound HTTP
connections. Notifications can be automatically deleted

after reading, if appropriate URL parameter is used at the

access time.

V. MYSQL AND SEDNA RD PERFORMANCE EVALUATION

 Evaluation of the response times for the main RD

features is presented in this section. The response times

are collected using the Apache JMeter tool [9]. Apache

JMeter is an open source Java desktop application

designed to load test functional behavior and measure

performance. Of a system The JMeter provides a rich set

of the components available using Graphical User

Interface (GUI). This set contains HTTP GET, POST,

PUT, DELETE methods as well as a thread manager for

multi user testing, a number of helping components like

timers, counters, asserts, etc. Test components could be

executed simultaneously using a number of threads.

Complex test scenarios can be created in the JMeter tool

using XML formatted test plan files.

The firs set of tests is performed for a variable number

of resource descriptions in the databases and a variable

number of simultaneous requests. The tests are performed

for 1000, 100.000 and 1.000.000 resource descriptions and

5, 10, 100 simultaneous requests. Resource descriptions

are the same, with the exception of the Resource-ID. The

test results are shown on the Fig. 2. Performed operation

0

500

1000

1500

2000

2500

3000

MySQL Sedna MySQL Sedna MySQL Sedna

RD Listing Resource Access Lookup RD

[m
s
]

5 users

20 users

100 users

Fig. 3. Response time comparing for EcoBus RD data

during the RD testing was default resource description

listing. This operation returns a set of resource descriptions

limited to length of 10. It can be noticed that the Sedna

based RD implementation has significantly shorter

response times in all test conditions. In the Sedna based

RD implementation resource listing and response limiting

is implemented using Sedna API for collection

management. The main reasons for the longer response

times of the relational based RD implementation is

primarily due to the need to query several tables and to

serialize the relational database response to XML format.

 The second set of tests is performed on the real RD

data from the EcoBus system. The most frequently

operations used in the system are evaluated. Resource

descriptions from the EcoBus system are copied to the

XML based RD and both RDs are hosted on the same

server. The test results are shown in Fig. 3. Tests are

performed for the operations set the most frequently used

in the EcoBus system: resource listing, lookup and access

to the particular resource description. The lookup was

performed for the tag Bus, with 70 matched resource

descriptions in the RDs. It can be noticed that the XML

based RD has shorter response times except in the case of

accessing a particular resource description. In that case the

relational based RD has slightly shorter execution time.

The most frequently executed RD operation in the EcoBus

system is lookup, regarding to finding REP interfaces of

buses, bus-lines etc.

VI. CONCLUSION

The variety and heterogeneity of Internet of Things

devices make it difficult to store their descriptions in

relational databases as addition of each new device

requires changes in the database structure. In this paper we

presented an implementation of a Resource Directory

based on the Sedna XML database, thus natively

supporting storing of various resource descriptions. This

native XML storage support, i.e. ability to directly process

XML data without having to do XML

serialization/deserialization first, results in shorter query

execution time and increased flexibility in resource

management.

Sedna is a free, open source native XML database with

drivers for various set of languages. Functionality of the

Java driver used in the implementation is a subset of the

functions available in the corresponding C++ driver. One

of the missing functions of the Java driver was setting a

limit on the query result set response. During evaluation, a

lot of resource descriptions were similar and queries could

result in more than 800.000 descriptions, this like result set

gathering should be limited in order to avoid database

deadlocking. Limiting response in the XQuery does not

solve problem in deep because internal calculation works

with all matched resource description. XML is case

sensitive as well as querying.

REFERENCES

[1] Tsiatsis, V., Gluhak, A., Bauge, T., Montagut, F., Bernat, J., Bauer,

M., Villalonga, C., Barnaghi, P., Krco, S. ”Real World Internet

Architecture. In: Towards the Future Internet - Emerging Trends

from European Research”. IOS Press, Amsterdam, April 2010.

[2] SENSEI, “Integrating the Physical with the Digital World of the

Network of the Future”, FP7 project, www.sensei-project.eu.

[3] RESTLET, “Open source REST framework for the Java”,
www.restlet.org.

[4] Srdjan Krco, Jelena Vuckovic, and Stevan Jokic, ”ecoBus – Mobile

Environment Monitoring”, Towards a Service-Based Internet Third

European Conference, ServiceWave 2010, Ghent, Belgium,

December 13-15, 2010. Proceedings pp 189-191.

[5] Smart Santander project, http://www.smartsantander.eu/

[6] Extensible Markup Language (XML) www.w3.org/XML/

[7] Modis group, Sedna XML DBMS,

http://modis.ispras.ru/Development/sedna.htm.

[8] W3C XML Query (XQuery), http://www.w3.org/XML/Query.

[9] Apache JMeter, http://jakarta.apache.org/jmeter/

[10] Restlet - RESTful web framework for Java, www.restlet.org/

SADRŽAJ

U ovom radu predstavljena je implementacija

Direktorijuma Resursa zasnovana na XML bazi podataka i

izvršeno je poređenje performansi te implementacije sa

implementacijom zasnovanoj na relacionoj SQL bazi

podataka. Rezultati testiranja pokazuju da XML baza

podataka pruža veću fleksibilnost u upravljanju resursima

uz kraće vreme upita, dok se primenom relacione baze

podataka ostvaruje kraće vreme u pristupu selektovanom

resursu.

Evaluacija performansi Direktorijuma Resursa

bazirana na XML BAZi PODATAKA

Stevan Jokić, Srđan Krčo, Jelena Vucković, Nenad

Gligoric, Dejan Drajic

