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ABSTRACT
The recently growing need to experiment with Internet of
Things (IoT) technologies in more realistic environments re-
quires the experimenter to have remote and precise obser-
vation of heterogeneous IoT devices under test. This paper
introduce SmartEye an energy efficient observer platform for
IoT testbeds. SmartEye embeds many features that are cur-
rently available on different observer system into a common
platform, while placing energy efficiency for autonomous op-
eration at the core of its design. It will provide the founda-
tion for a new class of IoT testbeds to be deployed in more
realistic testbed environments such as cities, urban areas
or more remote deployment environments without compro-
mising on the rich observational and management features
provided by today’s observer boards.
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1. INTRODUCTION
The difficulties associated with bringing research on ad-

vanced Future Internet technologies into real world deploy-
ments have sparked a recent trend in the research commu-
nity towards the use of testbed to experimentally evalu-
ate research outcomes in realistic environments. Evidence
thereof provide the GENI community in US or the FIRE
community in Europe, which work on the creation of het-
erogeneous testbeds that cover a wide spectrum of enabling
technologies that will play an important role in the Future
Internet. The IoT is such a technology and different testbed
for it have started to emerge [4], in which wireless sensor
network (WSN) nodes play the most prominent role. While
most IoT testbed installations have been initially confined
to lab environments, however outdoor testbeds have started
to recently emerge. Examples thereof are testbed deployed
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on roof tops [9, 2] of a building or even spanning areas of a
city [11, 8].

In contrast to service specific IoT deployments which com-
prise of the actual hardware that is necessary to support
a particular service or set of services (e.g. wireless sensor
nodes, gateways devices), testbeds can incorporate addi-
tional infrastructure - so called observer boards that provide
advanced observational and management capabilities related
to the individual nodes of an IoT testbed and the software
components that may run on them. These observer boards
are often colocated to the IoT nodes and directly attach
to them via multiple I/O interfaces to exchange informa-
tion out of band, take measurements of hardware behavior
or provide experimentation specific stimuli. Typical func-
tions performed by such observer boards are the remote
reprogramming of IoT nodes for a particular experiment,
the out-of-band collection of debugging information or cal-
culated KPIs, the sending of control commands to change
the behavior of experiments, measurements of energy con-
sumption, injection of real world events or interference etc.

Depending on the nature and diversity of management
and observation capabilities they provide, observer boards
are likely to be based on platforms that exceed the capa-
bilities of the attached IoT nodes they observe, i.e., embed-
ded Linux computers. Testbeds that employ such observer
boards are primarily lab-based testbeds in indoor environ-
ments or located outdoors attached to a lab building and
designed with the assumption that power supply is read-
ily available. However there is an increasing need for such
observer nodes to be deployed out-in-the-wild where the con-
tinuous availability of energy sources cannot be guaranteed
(e.g. solar panel, intermittent availability of street light
power). This requires the reconsideration of the design of
existing observer boards to take into account energy con-
straints, allowing them to become more autonomous in their
operation.

In this paper, we present SmartEye an energy efficient
observer platform for heterogeneous device platforms in IoT
testbeds. SmartEye embeds many features that are cur-
rently available on different observer system into a common
platform, while placing energy efficiency for autonomous op-
eration at the core of its design. SmartEye will provide the
foundation for a new class of IoT testbeds to be deployed in
more realistic testbed environments such as cities, urban ar-
eas or more remote deployment environments without com-
promising on the rich observational and management fea-



tures provided by today’s observer boards. Our contribu-
tions can be summarised as follows.
We report on the design and implementation of an energy

efficient observer platform for IoT testbeds which supports
multiple IoT devices and provides a rich set of observation
and management capabilities to cover the most common use
cases for IoT experimentation. Our initial design evalua-
tion concentrates on WSN nodes as an important IoT device
class. Energy efficiency is achieved by a careful selection of
platform components, modular design and additional hard-
ware features on the platform that allow fine grained energy
management depending on a specific usage scenario. The
observer platform provides an extensible design that allows
interfacing additional sensors and communication modules,
that can be made available to attached IoT nodes during ex-
perimentations to extend their capabilities for a particular
experiment. Furthermore, we provide a detailed quantita-
tive evaluation of the proposed observer platform focused on
its energy consumption for different usage scenarios and a
detailed characterization of the energy breakdown over its
components. We benchmark our platform to other exist-
ing observer platforms in terms of energy consumptions and
capabilities and prove in principle its self-sustainable oper-
ation.
The remaining paper is structured as follows. Section 2

surveys related work in the area. An overview of the Smart-
Eye and motivating requirements are provided in Section 3,
while Section 4 details the design of its hardware and soft-
ware components. Section 5 provides a detailed evaluation
of SmartEye. Final conclusions are provided in section 6.

2. RELATED WORK
Attaching observer platforms to IoT and wireless sensor

network (WSN) testbeds has been a feature commonly used
in testbed installations. Early examples of these observa-
tion boards can be found in lab- or building-scale testbeds
such as MoteLab and TWIST [4]. In such scenario, the ob-
servers are mainly represented by Linux computer providing
physical USB connectivity to a number of WSN nodes and
connecting them to a central testbed server through a wired
Ethernet connection. Initial platforms where primarily lim-
ited to testbed management tasks, showing only limited em-
ulation and measurement capabilities.
In order to further enhance their capabilities, external cus-

tom emulation boards have been designed for working with
some specific sensor platforms. Exploiting the USB connec-
tion, the EnvEmu [13] board can be connected between a
TelosB and its observer, allowing to change the sensor per-
ceived value of temperature, light and humidity and thus
emulating the occurrence of a given phenomenon. In addi-
tion, battery exhaustion or some sort of battery replenish-
ment through specific energy harvesting technique [3] can
also be emulated. Other boards such as the Test Daugh-
ter Board developed within the Senslab [10] testbed go be-
yond providing emulation capabilities. Coupled to a stan-
dard management board it is able to monitor all the GPIO
pins exposed by the device under test, thus allowing not just
injecting events but also profiling a device energy consump-
tion and I/O activity. A similar solution for a TelosB mote is
Aveksha [12] which represents a Telos Debug Board (TDB).
It operates as sister board for a TelosB mote and provides
JTAG control and debug, and through it energy monitoring
and execution profiling. Although these solutions can im-

prove the observations capability of original observer, most
of the times they represent platform specific solutions that
also always need a counterpart board in order perform other
testbed management tasks, such as reprogramming and col-
lecting out-of-band statics.

Despite the many possibilities such combination of obser-
vation and emulation boards can give for the interaction be-
tween the testbed management tools and the attached IoT
platform, all these functionalities come at a cost: the ad-
ditional energy required for powering such observer. This
limits the applicability of the aforementioned solutions only
to indoor testbeds or situations where mains power is readily
available.

In order to overcome the boundaries of the lab and to move
experiments to the wild, a set of custom and more integrated
boards have been recently designed in order to cope with the
constraints that such environment poses, such as the lack
of wired connectivity to the back-end server and unlimited
power resources. SeeDTV [7] represents the first attempt to
move testbed observation and management outside of the
lab. As extension board for MicaZ motes, it features an
embedded LCD screen that can provide immediate visual
feedback in response to some predefined observation and
management commands manually raised to the connected
platform and without the need to be connected to an addi-
tional board, but still missing the possibility to be remotely
managed at real-time. Differently, FlockLab [2] provides the
first example of a custom observer built around a an em-
bedded Gumstix Linux board and a standard WiFi module.
Other than supporting basic testbed management functions,
the FlockLab observer platform integrates additional capa-
bilities such as onboard storage and observation ability for
4 different devices through the use of specific interface slots
that provide access to the platform GPIO pins and means for
voltage control and power measurement. While integrating
most common management and observation functions for
outdoor testbed devices, FlockLab still misses the target to
be an energy efficient observer board, due to the consump-
tion of its components. A first attempt to provide an ultra
low-power observer board is represented by [14]. DualMote
represents one of the current ongoing approaches aiming at
coupling two standard motes through a UART connection
in order to use the first one for managing and monitoring a
second mote that actually acts as device under test.

The price of enabling very energy efficient and low power
observation of a testbed device is the lack of bandwidth for
sending and receiving debug information and management
tasks, due to the use of low-power transmission modules
based on IEEE 802.15.4. The observation and interaction
capabilities among the observer and the testbed device are
limited due to the use of a UART channel and a 8MHz
microcontroller. An approach similar to that provided by
the DualMote platform has been realized also in the Smart-
Santander [11] testbed, where a Waspmote platform [6] has
been enhanced with a second Xbee radio devoted to receive
management messages such as over-the-air reprogramming
images to be tested. The effectiveness of the observation
capabilities of such approach is limited by the employing
a single 8MHz Atmel microcontroller shared among testing
and managing tasks, which also impacts the capabilities to
assess the true system performance of a protocol on the tar-
get MCU.

In order to overcome the lack of existing energy efficient



wireless management solutions for outdoor testbed devices,
some solutions have also been designed exploiting energy
harvesting techniques for their autonomy in outdoor deploy-
ment. Platforms such as the CitySense [8] node and the
Meshlium [6] gateway deployed in Santander are able to self-
sustain during the day by scavenging energy from the mains
power of street lights during nighttime.

3. SYSTEM OVERVIEW
This section provides an overview of the SmartEye plat-

form and the underlying requirements that have motivated
its design.

3.1 Requirements
One of the main considerations has been the ability of

the observer system to operate in an outdoor environment,
without constant availability of a mains power source, while
providing a rich set of capabilities and features required for
the most common IoT experimentation use cases. Running
purely on battery is not feasible for longer periods of time
without maintenance effort. As observer systems need to
operate on demand based on changing experimenter needs,
duty cycling is difficult to realise without loosing flexibility.
Autonomy of the system should be achieved by the use of
intermittent power sources such as solar panels or oppor-
tunistic power available during the periods of operation of a
street light. The overall aim was to reduce the energy con-
sumption of the system as much as possible, while providing
sufficient capabilities in terms of processing power, sampling
rates required for measurements and communication band-
width towards the testbed infrastructure.
A second important design consideration was the support

of heterogeneous IoT device platforms by the observer sys-
tem.
A third requirement deals with the modularity of the plat-

form design. In order to make the platform suitable for mul-
tiple testbed deployment environments support for a diver-
sity of communication modules and types of sensor / actu-
ators is highly desired. However putting all onto one board
may quickly lead to unnecessary hardware costs and heav-
ily impact the available energy budget on the board. It is
therefore important that the observer board can be easily
customized by putting together a required configuration of
communication and sensing modules for a particular deploy-
ment scenario.
The above consideration primarily focused on non-functional

requirements of the platform. In addition, there are vari-
ous functional requirements that an observer board for most
common IoT testbed use cases must fulfill [4]. We can briefly
group the desired functions according to the observational
capabilities and sensor event emulation, communication ca-
pabilities, management capabilities and node capability ex-
tensions. The following list highlights the ones considered
important for the SmartEye design:

• Monitoring of GPIO pins of attached IoT nodes

• Energy consumptions profiling of attached IoT nodes
during operation with high resolution (> 1KHz) in-
cluding / excluding the USB power consumption

• Injection of emulated sensor events via DACs to the
DC inputs of IoT nodes

Figure 1: System Architecture

• Ability to exchange information directly with the IoT
nodes for the purpose of receiving debug information
or performance statistics or relay commands for exper-
imentation control

• Wireless streaming of live debug/statistics information
during experiments to the testbed backbone, even for
a meshed multi-hop setup with other observer boards

• IoT node power provision including controlled power
off and reset

• Remote reprogramming by flashing images required for
experiments on request to IoT nodes

• Local storage of collected debug information or perfor-
mance statistics locally or images for IoT nodes prior
reprogramming

3.2 System architecture
This section provides an overview of the overall architec-

ture of the system realized as shown in Figure 1. Based on
the aforementioned requirements, we have devised a system
architecture consisting of the main functional blocks neces-
sary for the realization of the SmartEye’s system.

At the heart of SmartEye is a microcontroller unit (MCU)
which executes the firmware for the SmartEye observer plat-
form. It processes all requests received from experimenters
via the control and management plane of the testbed and
coordinates resulting activities across all peripherals han-
dling the required observation, emulation and communica-
tion tasks.

Another important role of the MCU is to perform ad-
vanced energy management functionalities to minimise the
energy consumption across the platform. As energy effi-
ciency is an important design consideration, load switches
are added to all main subsystems of the observer platform.
This means the IoT node related subsystems, communica-
tion subsystems as well as storage subsystem can be individ-
ually powered down by the MCU, if they do not require in-
volvement in a particular system activity. The load switches
thus provide more fine grained energy management control
for a more energy efficient operation of the system.



In order to support the attachment of diverse IoT nodes,
our choice was to go for a USB Host functionality as many of
today’s mote class devices provide USB connectivity, e.g. via
an FTDI chip. This allows the bi-directional communication
with the attached IoT node as well as the bootstrap loading
of images.
For the measurement of the energy consumption of at-

tached IoT nodes, energy measurement circuits are con-
nected via ADC to the MCU. Our system embeds an energy
measurement circuits directly attached to the USB port that
provides power to the IoT node. Moreover, an additional
circuit can be attached behind the USB circuit of an IoT
node, so the energy consumption of an IoT node without its
USB subsystem can be measured. The observation subsys-
tem towards the IoT nodes also boasts various GPIO lines
and ADC channels as generic observation channels that can
be attached to the IoT node to capture more fine-grained in-
formation about an IoT node’s performance, actuation deci-
sions and internal states. In addition DAC lines are provided
which can be attached to ADC channels of the IoT node,
providing user controlled sensor emulation capabilities via
the MCU.
The communication subsystem has been designed with

modularity in mind, so different configurations of SmartEye
for particular deployment environments can be created in an
resource efficient manner. Most of today’s wireless commu-
nication modules such as WiFi, Bluetooth, GPRS modems,
ANT+ or 802.15.4 offer UART connections. Our design
allows the connection of one or more wireless communica-
tion modules, including an Ethernet module (not described
further here) for wired integration into an indoor testbed.
The storage subsystem allows to trade-off energy efficiency

with storage size. An external flash provides cheap and en-
ergy efficient storage for smaller amount of data, while for
larger volumes of data an external micro SD card can be
utilised.
Finally, the power supply circuit is composed of a bat-

tery charging unit capable to convey energy from an exter-
nal source such as a battery charger or a solar panel to a
Lithium Ion Battery. The battery was chosen for its com-
pactness and better efficiency as well as their vast available
in many mobile phones around the world making them af-
fordable at low cost. In order to support the USB Host
interface a 5V output voltage is needed to comply correctly
to USB standard specifications. For this purpose, a DC/DC
step up converter had to be integrated in the design in order
to provide the 5V power rail. The 5V rail is then downcon-
verted to a 3.3V regulated output via a low dropout LDO
regulator, which distributes the power to other subsystems
of the board, including MCU, memory and communication.

4. DESIGN AND IMPLEMENTATION
This section will in detail describe our concrete choices

in terms of hardware (HW) component and software (SW)
design for the realisation of the proposed SmartEye observer
system.

4.1 Hardware
In order to achieve a modular design with respect to the

communication subsystems, we decided to separate out the
communication modules from our main board. In our pre-
liminary proof-of-concept realisation we have built two com-
munication daughter boards, one for Ethernet and one for

WiFi. Figure 2 shows the main board with the MCU and
other aforementioned subsystems and the WiFi communica-
tion board. Our current prototype still uses various discrete
components, which will be replaced by surface mount com-
ponents for subsequent production.

One of the key design consideration for SmartEye was the
choice of the MCU. There is a wide range of energy-efficient
MCU platforms available for embedded devices ranging from
the 8bit ATmega128 family, the popular 16bit MSP430 fam-
ily or a large set of ARM based 32bit MCUs. While the
aforementioned 8 or 16bit architectures can provide higher
energy efficiency with many fine grained MCU power states,
their limitations in computational capabilities and clock speed,
built-in peripherial and memory makes them less attractive
for our demands. As we like to support concurrent sen-
sor emulation and live-streaming of multiple high sampling
rate observation channels back to a testbed backbone via
multi-hop communication with potentially multiple commu-
nication interfaces a 32bit MCU seems to be a more ade-
quate choice. Some 32bit MCU also come with a wide range
of peripherals such as multiple UARTS and SPIs, ADC and
DAC unit as well as built in Ethernet support and USB Host
functionality, which can minimise the amount of external
peripherals required and increase the flexibility of connect-
ing external devices for future extensions. After a careful
investigation, we decided that the NXP LPC1768 which is
based on an ARM Cortext M3 architecture provides the best
tradeoff between required processing power (up to 125MIPS
at 100MHz), available peripherials and energy consumption
(4 reduced power modes up to 517nA). Many of the MCU
pins have been brought externally on our port and can be
configured by software to to be UARTs, ADC inputs, DAC
output, Timers capture inputs, GPIOs and PWMs, thus en-
abling interaction with external communication devices and
observation and emulation services with the attached IoT
nodes. For the MCU, our board offers two separated crys-
tal oscillators, a 32.768KHz for the Real Time Clock and a
12MHz for the Core PLL.

In order to complement the USB Host interface provided
by the MCU, two ferrite beads have been added to the power
supply lines to avoid ESD events by the devices plugged
into the USB bus. An ultra low capacitance double rail
to rail ESD protection diode from NXP provides additional
signal protection from damages caused by electrostatic dis-
charges and other transients in the USB differential data
lines pair. In addition to that, a power measuring circuit
was included featuring a Texas Instrument’s INA138 high-
side shunt current measurement device which measures the
current provided by the USB Host +5V rail to the USB at-
tached Device. The output signal of this circuit was fed to a
Microchip MCP603 buffering rail to rail operational ampli-
fier and finally to an analog input connected to the internal
LPC1768’s 12 bit ADC.

For the design of the storage subsystem a comparison be-
tween different memory elements was made. Given the re-
quirements of low cost and low power consumption, a small
but low cost 16Mbit serial flash Atmel AT25DF161 was cho-
sen, which offers an SPI interface for programming and read-
ing and requires only 5uA in Deep Power Down. If addi-
tional stroge is needed, a microSD card could be added to
expand the onboard storage capabilities. A respective mi-
croSD card holder and circuit have been added to the board.

As aforementioned we realised an Ethernet and a WiFi



Figure 2: SmartEye

daughter board for the communication subsystem. While
the Ethernet board is used for mainly indoor deployment
scenarios where power availability is not an issue (i.e. Power
over Ethernet), the choice of the right WiFi communication
module represented a more important design consideration.
As can be seen from our evaluation in the Section 5 the
overall energy consumption of the observer board is domi-
nated by the WiFi communication module. In addition as
the WiFi module can operate at the same time as the ra-
dio of the IoT node, different frequency bands should be
ideally selected in order to avoid interference. We therefore
considered different ultra-low power WiFi modules available
that can operate in the 5GHz band. We narrowed down
our choices to two available modules on the market, the
Silex SX-SDCAG 802.11a/b/g SDIO card module and the
RS9110-N-11-26 from Redpine Signals. In the end we se-
lected the Redpine Signals module for its possibility to adopt
lower power modes states (up to 4mA in standby) as well
as its capability to run at 5GHz mode both in Ad-Hoc and
Infrastructure mode providing also a full TCP/IP stack.
The realisation of the power circuit requires a battery

charging circuit, which is based on the Texas Instrument’s
BQ2057 advanced linear charge management integrated cir-
cuit capable of exploiting a 5V power supply rail to recharge
a 4.2V end-voltage Lithium Ion Battery with an with end
charge current of 500mA. A National Semiconductor’s LM2621
low input voltage step up DC/DC converter provides us with
a 5V power rail for the USB Host. While supporting up to
1A of load currents, it features a low shutdown current of
less than 2.5µA. The last part of the powering circuit is the
LDO regulator that steps down the voltage to the 3.3V rail
which powers all the other components of the board. Load
switches used for powering off the different subsystems are
based on the the Fairchild Semiconductor FPF2123. The
selected load switch operates with a shutdown current of
less than 2µA and provides at the same time protection to
eventually connected devices on the USB bus, which may
encounter large current conditions. Switch control is per-
formed by a signal directly controlled by a the GPIOs of the
MCU.

4.2 Software
In the following we briefly describe the development of

the software components that run on top of the MCU of
the SmartEye board and the PC side testing tool that we
developed for control and validation of the envisioned Smart-
Eye functionality. It should be noted that the purpose was

to build a proof-of-concept to validate in principle all en-
visioned functions of the board. A more comprehensive
firmware which will integrate all features smoothly with our
testbed control and management plane as well as smart en-
ergy management is planned for a second release this sum-
mer.

Our firmware for the board is written in C and is based on
the NXP LPC17xx CMSIS (Cortex Microcontroller Software
Interface Standard), which provides for an HW abstraction
layer for the ARM MCUs and includes start up files and
predefined interface for accessing hardware on a basic level.
Our prototype includes drivers for communication with all
subsystems and application logic to perform the desired ob-
servation, emulation and management tasks.

A USB Host Controller driver was written by adapting the
NXP USB Host lite driver to correctly recognize and con-
figure attached IoT nodes. Our implementation currently
supports all platforms based on an FTDI chip. We used the
Microsoft USBView software to sniff out appropriate driver
configurations. By an appropriate study of the TelosB mote
datasheet and an FTDI driver implementation for linux, it
was also possible to build a driver on top of the USB Host
driver to enable the bi-directional communication with an
attached mote. Furthermore, a driver for the MSP430 boot-
strap loader was made to enable erasing, resetting and repro-
gramming the sensor node’s flash. The current implementa-
tion thus supports communication with all devices with an
FTDI chip. The same approach for driver design can be fol-
lowed in order to support Sunspot motes and to demonstrate
the flexibility of SmartEye to support other platforms.

A driver for the WiFi module was implemented, exploiting
UART routines to interact with it and the setup of TCP/IP
sockets with a connected laptop in Ad-Hoc mode. In addi-
tion, a driver for the external flash memory was written to
obtain routines with SPI Commands to erase, program and
read the memory.

In order to validate all implemented HW/SW functions of
the observer board, a PC side control and testing tool was
developed which is shown in Figure 3. It supports all main
functions such as establishing a remote connection from the
observer board, intialisation of different subsystem compo-
nents, management functions such as reseting of nodes, up-
load and bootstrap loading of images the IoT nodes, bi-
directional transfer of commands and debugging data to and
from the IoT nodes as well as observational capabilities such
as the retrieval of energy consumption readings or other ob-
servation made by the ADC of the SmartEye board. In the
next section we will describe different test cases that we con-
ducted in more detail.

5. EVALUATION
The following section provides an evaluation and assess-

ment of the energy efficient features of the SmartEye ob-
server platform. We first provide a qualitative discussion of
the supported capabilities, benchmarking SmartEye against
other state-of-the platforms. We then perform a detailed
quantitative study into the energy efficiency of our plat-
form in order to evaluate the goodness of our design choices.
Finally, we examine the case of autonomous operation of
SmartEye in case of outdoor deployments, identifying under
what conditions self-sustainability can be achieved.

5.1 Platform Capabilities



Figure 3: PC side control and testing tool for the
SmartEye platform.

Based on our analysis of related work (Section 2) the
following three platforms have been selected as representa-
tive of observers for outdoor testbed experiments: FlockLab,
DualMote and CitySense. Table 1 provides a comparison of
the different observer platforms. As those platforms are not
commercially available and no accurate design specifications
are available for their reproduction, we confine our compar-
ison to a qualitative one based on available information and
data sheets. It shows that the SmartEye platform has the
best coverage in terms of required features (see Section 3) for
observer boards. DualMote and CitySense represent plat-
forms designed for outdoor testbeds made of specific IoT
testbed devices. In contrast SmartEye and FlockLab are de-
signed to support a wider range of IoT devices. Differently
from FlockLab, SmartEye embeds a USB Host controller,
which allows it to be extended to support all IoT platforms
designed with a USB interface. Our initial prototype demon-
strates support for TelosB motes. Using the same approach
for driver design other platforms featuring the same FTDI
USB chip (e.g. iSense, SunSpot or Waspmote) can be easily
supported.
All observer platforms provide wireless communication ca-

pabilities, which is instrumental for outdoor deployments.
However the low data rate radio of DualMote, despite be-
ing ultra-low power, makes it inadequate to support reliable
real-time control and streaming of high resolution observa-
tional data of the IoT device under test. The support of the
IEEE 802.11n standard makes SmartEye and Flocklab par-
ticularly suitable for deployment in WSNs and IoT testbeds
as they can avoid interference when operating concurrently
with an experiment in the 5GHz band.
The table also roughly compares the energy efficiency of

the different observer boards, by considering only the most
power hungry components (MCU and wireless radio) from

Table 1: Existing Observers comparison
Feature SmartEye FlockLab DualMote CitySense

Platforms 4+ 4 1 1
Mgmt. X X X X

Observation X X
Emulation X X

Connectivity 802.11n 802.11bgn 802.15.4 802.11abg
Autonomy X X X
Cons.(mA) 234.8 760+ 27.7 1400+
Cost($) <100 >170 ≈ 100 >200

the data sheets against the real measured maximum con-
sumption of SmartEye (please see next section for more de-
tails). As can be seen from the table DualMote provides the
highest energy efficiency from all platforms. However the
ultra-low power design sacrifices both data rate and com-
putational power, leaving most desired features unfulfilled.
SmartEye in contrast fulfills all desired features for the most
common use cases of an observer board, yet has a signifi-
cantly lower current draw than both Flocklab and CitySense,
thus allowing our board to easier operate autonomously as
discussed in Section 5.3. A final important note concerns the
very low component price of the SmartEye board, making it
more suitable for larger testbed deployment when compared
with the other boards.

5.2 Energy Consumption Breakdown
For this set of tests we used a standard bench Black-

Star 3225 MP multimeter to evaluate the current breakdown
among the different components of the SmartEye board. Ev-
ery measurement is taken for a stable output and repeated
10 times before averaging the final result. In order to de-
termine the consumption for the MCU in varying operating
modes, we measured the current flowing in the entire board
after the 3.3V LDO regulator, while keeping all the periph-
erals switched off. We then measured the current flowing
in the WiFi module, in the Flash memory on various test
setups and lastly in an TelosB node both from 5V and from
3.3V. The corresponding results are shown in Table 2. The

Table 2: Breakdown of Current Consumption
Component Power Mode Current

MCU Deep Power Down 790µA
MCU Power Down 11.595mA
MCU Deep Sleep 11.598mA
MCU Sleep 28mA
MCU Running at 10MHz 13.609mA
MCU Running at 100MHz 51.8mA
WiFi RF, Baseband and Core Sleep 10.293mA
WiFi Connected to AP 183mA
WiFi RX/TX in Ad-Hoc mode 193.5mA
Flash On, idle 26µA
Flash Programming 4.47mA
Flash Reading 4.5mA
Flash Erasing Chip 12.532mA
TelosB USB + Non USB 87.2mA
TelosB Non USB 32.2mA

MCU consumption is evaluated in Deep Power Down, Power
Down, Deep Sleep, Sleep, Running at 10MHz and Running
at 100MHz, showing that the device is capable of trading-off
between performance and power consumption, thus enabling
energy efficient behavior. As for the WiFi module, the con-
sumption is measured in the following modes: sleep, con-
nected to access point as well as receiving and transmitting
in Ad-Hoc mode while connected to a laptop. The results
show that the WiFi module is capable of being put in low
power modes thus reducing the power consumption when
connected but not transmitting. Furthermore, we measured
with the MCU’s timers the time needed by the WiFi mod-
ule to turn on and setup a connection. This could be ac-
complished in only 428ms, showing the possibility to turn
off the device and save further additional energy when not



needed. The consumption for the Flash Memory are evalu-
ated when in idle mode, programming and reading as well
as when erasing the entire chip, showing a generally low
power consumption. Finally the IoT node TelosB in an idle
configuration showed a major consumption at 5V because
it includes also USB components such as the FTDI in its
supply circuit, whereas if powered at 3.3V from the battery
pins the consumption showed is far less.
Apart from measuring the current breakdown over the dif-

ferent components, we also evaluated the consumption for
various test scenarios that resemble typical use cases of op-
eration while experimenting in a testbed. During this tests
measurements are taken from the battery charger at 5V.
The corresponding results are shown in Table 3. Scenario 1
resembles the best case, where the MCU is in Deep Power
Down mode and all the peripherals are switched off. Sce-
nario 2 and 3 represent the worst case in which the USB
device is powered and configured, the WiFi module is con-
nected and either receiving or transmitting. As data is
streamed via WiFi to the testbed backbone the flash mem-
ory is assumed to be turned off. The scenarios represent ei-
ther the case of streaming live debug messages from the sen-
sor node to testbed or the case of management/continuous
emulation during which control messages are uploaded to
the platform from the testbed framework. Scenario 4 is the
offline debugging, where after the task of collecting data in
the flash, the upload of its 2MB entire content to a cen-
tral server is made through the WiFi module. In this case,
an evaluation of the duration of the task was possible and
made showing in the best case 22647ms necessary to read
the entire flash and to correctly transmit it on a TCP socket
to the server running on a laptop. Nevertheless this figure
is only indicative since it’s dependent on both the software
implementation and the transmission protocol. Scenario 5,
instead shows the reprogramming of a node image stored
in the external flash. For this purpose we used an image
of ROME [1] which fills up nearly the entire ROM avail-
able (≈ 48KB) for a TelosB mote. We measured the time
needed for the reprogramming was 17069ms. Finally, sce-
nario 6 represents a energy profiling case in which the ADC
is performing sampling of the current at the maximum speed
of 200Ksample/s. However, since this sampling frequency
would generate a large amount of data, a reading of the
ADC’s result registry was made every 500µs thus producing
only 24KB/s and not losing accuracy in terms of profiling.
In this case, the WiFi is off and the only agents active are the
USB node, the MCU and the external Flash. Figure 4 shows
an example of realtime energy profiling including USB of the
ROME protocol. The blue line shows the current consump-
tion of a node alternating between awake and asleep states
with a duty-cycle d equal to 0.1, while the red one shows
a node always awake and with the radio in listening mode
(d = 1.0).

5.3 Self-Sustainability Assessment
The results of the last section provide us with an under-

standing of energy consumption for both typical and worst
cases of operation of SmartEye. In this section we assess the
self-sustainability of the platform by providing an approxi-
mate estimate of the dimensions of a photovoltaic cell solar
panel for typical and worst case operation. Starting with the
worst case consumption, SmartEye requires 290mA, leading

Figure 4: ROME Power Profile (Current(mA) vs
Sample)

Table 3: Test Scenarios
Scenario Current

1 Power Down 5.44mA
2 Realtime Debug 290mA
3 Realtime Control 290mA
4 Offline Debug 271mA
5 Reprogramming 105.3mA
6 Energy Profiling 160mA

to a total power consumption of:

P = V × I = 0.29× 5 = 1.45W

This means that daily, the consumption is quantifiable in:

PD = P × 24h = 1.45W × 24h = 34.8Wh

We queried the Photovoltaic Geographical Information Sys-
tem database [5] provided by the Joint Research Center In-
stitute for Energy and Transport using their PV estimation
utility to accurate dimension the solar panel based on real
solar illumination data. We used as the location the our
University campus where we aim to deploy SmartEye in an
outdoor testbed (51◦14′59” North, 0◦34′0” West, Elevation:
30 m a.s.l). We assumed optimal inclination and orientation
of the panel and an estimated loss of 10% due the ineffi-
ciency of the energy accumulation device. Considering an
estimated loss due to angular reflectance effects and due to
local temperature data leads to a combined loss of 19.7%.
Performing some trial with different values of peak power
(Wp) of crystalline silicon panels, we found out that the
worst case is in general during the month of December, as
it can be seen in Table 3. Moreover, assuming the board is
continuously operating for 24h/day in the worst case mode,
the required daily average of at least 35Wh can be sustained
by at least a 45Wp panel during the December month. How-
ever the costs for such panel are rather high. Furthermore
dimensioning the panel to the worst case will result in energy
being wasted in the remaining part of the year. For exam-
ple, the year average daily production is of 115Wh which is
more than 3 times of what is needed and in summer this will
rise to a 176W in July which is more than 5 times the energy
required. In a more typical scenario of utilization, the usual
activity will involve a Reprogramming of the nodes, the En-
ergy profiling for some time and the offline upload of the data
back to the server. Since the reprogramming and the upload
task are made through a reliable and fast link such as WiFi,
the most important contribution to consumption is given by
the Energy Profiling task. This accounts for a 160mA (of



Table 4: Test Scenarios
Month Monthly kWh Daily kWh
Jan 1.42 0.046
Feb 2.15 0.077
Mar 3.28 0.106
Apr 4.70 0.157
May 5.31 0.171
Jun 5.15 0.172
Jul 5.45 0.176
Aug 5.05 0.163
Sep 3.85 0.128
Oct 2.78 0.090
Nov 1.71 0.057
Dec 1.08 0.035

Year Average 3.50 0.115

which 87.2mA are for powering the TelosB) and since an 8h
daily full utilization would be an appreciable reference for a
Testbed use, this shows that a 6.4Wh daily energy is needed,
which is easily provided by 4Wp solar panel, that is a tenth
of the worst case which would produce a year average daily
energy of 11.5Wh which is roughly two times the need.

6. CONCLUSION AND FUTURE WORK
This paper presented SmartEye, a new hardware platform

designed to enable low-energy observation of large scale and
outdoor WSNs and IoT testbeds. A detailed evaluation of
its consumption shows that SmartEye is more energy effi-
cient than other platforms with similar observational and
management features and thus able to effectively perform
typical testbed observation and management tasks in a self-
sustainable way, e.g. by just relying on solar panels as a
power source. This makes the platform deployable in most
outdoor environments. The already very low energy con-
sumption of the SmartEye platform can be further reduced
based from the initial experiences gained by our evaluations.
A revision of the platform is currently under development,
which will form the basis of an IoT outdoor testbed de-
ployment consisting of 100 SmartEye observer boards. The
availability of a such large outdoor testbed operated through
the SmartEye platform will give use the possibility also to
better characterize and assess the effectiveness of our plat-
form in a real operating scenario.
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